Telegram Group & Telegram Channel
#ML_in_business

🏷️ Ценообразование: часть 2. Как мы делали dynamic pricing в Яндекс.Такси

🗓️ Во-первых, вспомним про контекст 2017 года, когда в такси появлялся ML в ценообразовании. Был ряд крупных игроков, среди которых Gett, Uber и Яндекс.Такси, которые довольно активно конкурировали. Особенно последние два. Каждый игрок на рынке имел свою тарификацию за километр и за минуту (которые постепенно у всех примерно сошлись), итоговая цена - это стоимость времени плюс стоимость расстояния.

🤔 Можно ли здесь накинуть 20% сверх вашей ценовой политики «просто так» и «потому что купят»? Скорее нет, потому что не купят. Откроют соседнее приложение и закажут там дешевле. А вот когда действительно есть простор для конкуренции, так это когда водители в районе кончились. Если вы можете увезти клиента, а конкурент нет - клиент достанется вам.

💡 Отсюда возникает идея: динамическое ценообразование должно делать так, чтобы водителей всегда хватало, т.е. срезать часть спроса. Здесь есть серьезный плюс и для клиента: если такой прайсинг работает, то клиент всегда сможет уехать на такси, пусть иногда и за дорого.

Таким образом, если водителей много, оставляем обычные цены, а вот если водителей становится меньше, чем спрос на поездки, умножаем базовую цену на повышающий коэффициент. Коэффициент должен выводить систему в состояние баланса: в пик спроса количество освобождающихся рядом водителей должно быть примерно равно количеству заказов, которые сделают в ближайшее время.

⚖️ Уравнение, которое описывает это состояние динамического равновесия (мы называли его «уравнение баланса»), можно записывать по-разному, дорабатывать и модифицировать. Этим занималась команда эффективности платформы под руководством Саши Аникина (ныне СЕО Яндекс.Go).

Моя же команда делала прогнозные ML-модели, которые были нужны для уравнения. Например, про водителей мы еще понимаем, кто и когда закончит поездку в заданном районе. А вот про пассажиров действительно нужно прогнозировать, с какой вероятностью пин превратиться в заказ (в зависимости от цены). Дальше суммируем вероятности в заданном районе, чтобы получить матожидание заказов, и подбираем такую цену, чтобы нам хватило притока водителей в район эти заказы вывезти.

Уравнение баланса можно усложнять и усложнять. Например, можно учесть, что как только водители видят сурдж на карте, они начинают специально переезжать в район подороже. Или можно добавлять вероятность того, что водитель все равно не возьмет заказ. Или вероятность отмены.

☝️Но идейно простой модели уже достаточно, чтобы решать основную задачу - всегда давать пассажиру уехать. Это когда у вас есть такси по цене х2 вы огорчаетесь. А вот я вас уверяю, если все уехали по х1, а вы просто не уедете - это куда обиднее :) Недавно попадал в такую ситуацию в другой стране, совсем не понравилось.

Задавайте в комментариях вопросы про модели ценообразования, в следующем посте я отвечу на популярные мифы и то, что еще поместится в пост :)

P.S.: скорее всего, сейчас алгоритмы уже совсем поменялись, все-таки прошло много времени и рынок теперь другой, но несколько лет с 2017 все работало как-то так
👍267🔥6🤬3🤩3💩3



tg-me.com/kantor_ai/275
Create:
Last Update:

#ML_in_business

🏷️ Ценообразование: часть 2. Как мы делали dynamic pricing в Яндекс.Такси

🗓️ Во-первых, вспомним про контекст 2017 года, когда в такси появлялся ML в ценообразовании. Был ряд крупных игроков, среди которых Gett, Uber и Яндекс.Такси, которые довольно активно конкурировали. Особенно последние два. Каждый игрок на рынке имел свою тарификацию за километр и за минуту (которые постепенно у всех примерно сошлись), итоговая цена - это стоимость времени плюс стоимость расстояния.

🤔 Можно ли здесь накинуть 20% сверх вашей ценовой политики «просто так» и «потому что купят»? Скорее нет, потому что не купят. Откроют соседнее приложение и закажут там дешевле. А вот когда действительно есть простор для конкуренции, так это когда водители в районе кончились. Если вы можете увезти клиента, а конкурент нет - клиент достанется вам.

💡 Отсюда возникает идея: динамическое ценообразование должно делать так, чтобы водителей всегда хватало, т.е. срезать часть спроса. Здесь есть серьезный плюс и для клиента: если такой прайсинг работает, то клиент всегда сможет уехать на такси, пусть иногда и за дорого.

Таким образом, если водителей много, оставляем обычные цены, а вот если водителей становится меньше, чем спрос на поездки, умножаем базовую цену на повышающий коэффициент. Коэффициент должен выводить систему в состояние баланса: в пик спроса количество освобождающихся рядом водителей должно быть примерно равно количеству заказов, которые сделают в ближайшее время.

⚖️ Уравнение, которое описывает это состояние динамического равновесия (мы называли его «уравнение баланса»), можно записывать по-разному, дорабатывать и модифицировать. Этим занималась команда эффективности платформы под руководством Саши Аникина (ныне СЕО Яндекс.Go).

Моя же команда делала прогнозные ML-модели, которые были нужны для уравнения. Например, про водителей мы еще понимаем, кто и когда закончит поездку в заданном районе. А вот про пассажиров действительно нужно прогнозировать, с какой вероятностью пин превратиться в заказ (в зависимости от цены). Дальше суммируем вероятности в заданном районе, чтобы получить матожидание заказов, и подбираем такую цену, чтобы нам хватило притока водителей в район эти заказы вывезти.

Уравнение баланса можно усложнять и усложнять. Например, можно учесть, что как только водители видят сурдж на карте, они начинают специально переезжать в район подороже. Или можно добавлять вероятность того, что водитель все равно не возьмет заказ. Или вероятность отмены.

☝️Но идейно простой модели уже достаточно, чтобы решать основную задачу - всегда давать пассажиру уехать. Это когда у вас есть такси по цене х2 вы огорчаетесь. А вот я вас уверяю, если все уехали по х1, а вы просто не уедете - это куда обиднее :) Недавно попадал в такую ситуацию в другой стране, совсем не понравилось.

Задавайте в комментариях вопросы про модели ценообразования, в следующем посте я отвечу на популярные мифы и то, что еще поместится в пост :)

P.S.: скорее всего, сейчас алгоритмы уже совсем поменялись, все-таки прошло много времени и рынок теперь другой, но несколько лет с 2017 все работало как-то так

BY Kantor.AI


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/kantor_ai/275

View MORE
Open in Telegram


Kantor AI Telegram | DID YOU KNOW?

Date: |

Export WhatsApp stickers to Telegram on iPhone

You can’t. What you can do, though, is use WhatsApp’s and Telegram’s web platforms to transfer stickers. It’s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file won’t be a picture, though—it’s a webpage and will have a .webp extension. Don’t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as you’d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and you’ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Kantor AI from jp


Telegram Kantor.AI
FROM USA